End-joining repair of double-strand breaks in Drosophila melanogaster is largely DNA ligase IV independent.

نویسندگان

  • Mitch McVey
  • Dora Radut
  • Jeff J Sekelsky
چکیده

Repair of DNA double-strand breaks can occur by either nonhomologous end joining or homologous recombination. Most nonhomologous end joining requires a specialized ligase, DNA ligase IV (Lig4). In Drosophila melanogaster, double-strand breaks created by excision of a P element are usually repaired by a homologous recombination pathway called synthesis-dependent strand annealing (SDSA). SDSA requires strand invasion mediated by DmRad51, the product of the spn-A gene. In spn-A mutants, repair proceeds through a nonconservative pathway involving the annealing of microhomologies found within the 17-nt overhangs produced by P excision. We report here that end joining of P-element breaks in the absence of DmRad51 does not require Drosophila LIG4. In wild-type flies, SDSA is sometimes incomplete, and repair is finished by an end-joining pathway that also appears to be independent of LIG4. Loss of LIG4 does not increase sensitivity to ionizing radiation in late-stage larvae, but lig4 spn-A double mutants do show heightened sensitivity relative to spn-A single mutants. Together, our results suggest that a LIG4-independent end-joining pathway is responsible for the majority of double-strand break repair in the absence of homologous recombination in flies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Roles for DNA Polymerase Theta in Alternative End-Joining Repair of Double-Strand Breaks in Drosophila

DNA double-strand breaks are repaired by multiple mechanisms that are roughly grouped into the categories of homology-directed repair and non-homologous end joining. End-joining repair can be further classified as either classical non-homologous end joining, which requires DNA ligase 4, or "alternative" end joining, which does not. Alternative end joining has been associated with genomic deleti...

متن کامل

The Drosophila melanogaster DNA Ligase IV gene plays a crucial role in the repair of radiation-induced DNA double-strand breaks and acts synergistically with Rad54.

DNA Ligase IV has a crucial role in double-strand break (DSB) repair through nonhomologous end joining (NHEJ). Most notably, its inactivation leads to embryonic lethality in mammals. To elucidate the role of DNA Ligase IV (Lig4) in DSB repair in a multicellular lower eukaryote, we generated viable Lig4-deficient Drosophila strains by P-element-mediated mutagenesis. Embryos and larvae of mutant ...

متن کامل

Double-Strand Break Repair Assays Determine Pathway Choice and Structure of Gene Conversion Events in Drosophila melanogaster

Double-strand breaks (DSBs) must be accurately and efficiently repaired to maintain genome integrity. Depending on the organism receiving the break, the genomic location of the DSB, and the cell-cycle phase in which it occurs, a DSB can be repaired by homologous recombination (HR), nonhomologous end-joining (NHEJ), or single-strand annealing (SSA). Two novel DSB repair assays were developed to ...

متن کامل

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

An Inhibitor of Nonhomologous End-Joining Abrogates Double-Strand Break Repair and Impedes Cancer Progression

DNA Ligase IV is responsible for sealing of double-strand breaks (DSBs) during nonhomologous end-joining (NHEJ). Inhibiting Ligase IV could result in amassing of DSBs, thereby serving as a strategy toward treatment of cancer. Here, we identify a molecule, SCR7 that inhibits joining of DSBs in cell-free repair system. SCR7 blocks Ligase IV-mediated joining by interfering with its DNA binding but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 168 4  شماره 

صفحات  -

تاریخ انتشار 2004